3.3.36 \(\int \frac {(A+B \log (e (a+b x)^n (c+d x)^{-n}))^p}{a c f+(b c+a d) f x+b d f x^2} \, dx\) [236]

3.3.36.1 Optimal result
3.3.36.2 Mathematica [A] (verified)
3.3.36.3 Rubi [A] (warning: unable to verify)
3.3.36.4 Maple [F]
3.3.36.5 Fricas [A] (verification not implemented)
3.3.36.6 Sympy [F(-1)]
3.3.36.7 Maxima [F]
3.3.36.8 Giac [A] (verification not implemented)
3.3.36.9 Mupad [F(-1)]

3.3.36.1 Optimal result

Integrand size = 50, antiderivative size = 52 \[ \int \frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^p}{a c f+(b c+a d) f x+b d f x^2} \, dx=\frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^{1+p}}{B (b c-a d) f n (1+p)} \]

output
(A+B*ln(e*(b*x+a)^n/((d*x+c)^n)))^(p+1)/B/(-a*d+b*c)/f/n/(p+1)
 
3.3.36.2 Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.96 \[ \int \frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^p}{a c f+(b c+a d) f x+b d f x^2} \, dx=\frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^{1+p}}{f (b B c n-a B d n) (1+p)} \]

input
Integrate[(A + B*Log[(e*(a + b*x)^n)/(c + d*x)^n])^p/(a*c*f + (b*c + a*d)* 
f*x + b*d*f*x^2),x]
 
output
(A + B*Log[(e*(a + b*x)^n)/(c + d*x)^n])^(1 + p)/(f*(b*B*c*n - a*B*d*n)*(1 
 + p))
 
3.3.36.3 Rubi [A] (warning: unable to verify)

Time = 0.55 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.98, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2973, 2974, 2961, 2739, 15}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (B \log \left (e (a+b x)^n (c+d x)^{-n}\right )+A\right )^p}{f x (a d+b c)+a c f+b d f x^2} \, dx\)

\(\Big \downarrow \) 2973

\(\displaystyle \int \frac {\left (B \log \left (e (a+b x)^n (c+d x)^{-n}\right )+A\right )^p}{f x (a d+b c)+a c f+b d f x^2}dx\)

\(\Big \downarrow \) 2974

\(\displaystyle \frac {\int \frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^p}{(a+b x) (c+d x)}dx}{f}\)

\(\Big \downarrow \) 2961

\(\displaystyle \frac {\int \frac {(c+d x) \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^p}{a+b x}d\frac {a+b x}{c+d x}}{f (b c-a d)}\)

\(\Big \downarrow \) 2739

\(\displaystyle \frac {\int \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^pd\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{B f n (b c-a d)}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {\left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )^{p+1}}{B f n (p+1) (b c-a d)}\)

input
Int[(A + B*Log[(e*(a + b*x)^n)/(c + d*x)^n])^p/(a*c*f + (b*c + a*d)*f*x + 
b*d*f*x^2),x]
 
output
(A + B*Log[e*((a + b*x)/(c + d*x))^n])^(1 + p)/(B*(b*c - a*d)*f*n*(1 + p))
 

3.3.36.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 2739
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Simp[1/( 
b*n)   Subst[Int[x^p, x], x, a + b*Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p} 
, x]
 

rule 2961
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*( 
B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol 
] :> Simp[(b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q   Subst[Int[x^m*((A + B*L 
og[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, i, A, B, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IntegersQ[m, q]
 

rule 2973
Int[((A_.) + Log[(e_.)*(u_)^(n_.)*(v_)^(mn_)]*(B_.))^(p_.)*(w_.), x_Symbol] 
 :> Subst[Int[w*(A + B*Log[e*(u/v)^n])^p, x], e*(u/v)^n, e*(u^n/v^n)] /; Fr 
eeQ[{e, A, B, n, p}, x] && EqQ[n + mn, 0] && LinearQ[{u, v}, x] &&  !Intege 
rQ[n]
 

rule 2974
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*( 
B_.))^(p_.)*((f_.) + (g_.)*(x_) + (h_.)*(x_)^2)^(m_.), x_Symbol] :> Simp[h^ 
m/(b^m*d^m)   Int[(a + b*x)^m*(c + d*x)^m*(A + B*Log[e*((a + b*x)/(c + d*x) 
)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A, B, n, p}, x] && EqQ[b* 
d*f - a*c*h, 0] && EqQ[b*d*g - h*(b*c + a*d), 0] && IntegerQ[m]
 
3.3.36.4 Maple [F]

\[\int \frac {{\left (A +B \ln \left (e \left (b x +a \right )^{n} \left (d x +c \right )^{-n}\right )\right )}^{p}}{a c f +\left (a d +c b \right ) f x +b d f \,x^{2}}d x\]

input
int((A+B*ln(e*(b*x+a)^n/((d*x+c)^n)))^p/(a*c*f+(a*d+b*c)*f*x+b*d*f*x^2),x)
 
output
int((A+B*ln(e*(b*x+a)^n/((d*x+c)^n)))^p/(a*c*f+(a*d+b*c)*f*x+b*d*f*x^2),x)
 
3.3.36.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.60 \[ \int \frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^p}{a c f+(b c+a d) f x+b d f x^2} \, dx=\frac {{\left (B n \log \left (b x + a\right ) - B n \log \left (d x + c\right ) + B \log \left (e\right ) + A\right )} {\left (B n \log \left (b x + a\right ) - B n \log \left (d x + c\right ) + B \log \left (e\right ) + A\right )}^{p}}{{\left (B b c - B a d\right )} f n p + {\left (B b c - B a d\right )} f n} \]

input
integrate((A+B*log(e*(b*x+a)^n/((d*x+c)^n)))^p/(a*c*f+(a*d+b*c)*f*x+b*d*f* 
x^2),x, algorithm="fricas")
 
output
(B*n*log(b*x + a) - B*n*log(d*x + c) + B*log(e) + A)*(B*n*log(b*x + a) - B 
*n*log(d*x + c) + B*log(e) + A)^p/((B*b*c - B*a*d)*f*n*p + (B*b*c - B*a*d) 
*f*n)
 
3.3.36.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^p}{a c f+(b c+a d) f x+b d f x^2} \, dx=\text {Timed out} \]

input
integrate((A+B*ln(e*(b*x+a)**n/((d*x+c)**n)))**p/(a*c*f+(a*d+b*c)*f*x+b*d* 
f*x**2),x)
 
output
Timed out
 
3.3.36.7 Maxima [F]

\[ \int \frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^p}{a c f+(b c+a d) f x+b d f x^2} \, dx=\int { \frac {{\left (B \log \left (\frac {{\left (b x + a\right )}^{n} e}{{\left (d x + c\right )}^{n}}\right ) + A\right )}^{p}}{b d f x^{2} + a c f + {\left (b c + a d\right )} f x} \,d x } \]

input
integrate((A+B*log(e*(b*x+a)^n/((d*x+c)^n)))^p/(a*c*f+(a*d+b*c)*f*x+b*d*f* 
x^2),x, algorithm="maxima")
 
output
integrate((B*log((b*x + a)^n*e/(d*x + c)^n) + A)^p/(b*d*f*x^2 + a*c*f + (b 
*c + a*d)*f*x), x)
 
3.3.36.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.98 \[ \int \frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^p}{a c f+(b c+a d) f x+b d f x^2} \, dx=\frac {{\left (B n \log \left (b x + a\right ) - B n \log \left (d x + c\right ) + B \log \left (e\right ) + A\right )}^{p + 1}}{{\left (B b c f n - B a d f n\right )} {\left (p + 1\right )}} \]

input
integrate((A+B*log(e*(b*x+a)^n/((d*x+c)^n)))^p/(a*c*f+(a*d+b*c)*f*x+b*d*f* 
x^2),x, algorithm="giac")
 
output
(B*n*log(b*x + a) - B*n*log(d*x + c) + B*log(e) + A)^(p + 1)/((B*b*c*f*n - 
 B*a*d*f*n)*(p + 1))
 
3.3.36.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )\right )^p}{a c f+(b c+a d) f x+b d f x^2} \, dx=\int \frac {{\left (A+B\,\ln \left (\frac {e\,{\left (a+b\,x\right )}^n}{{\left (c+d\,x\right )}^n}\right )\right )}^p}{b\,d\,f\,x^2+f\,\left (a\,d+b\,c\right )\,x+a\,c\,f} \,d x \]

input
int((A + B*log((e*(a + b*x)^n)/(c + d*x)^n))^p/(a*c*f + f*x*(a*d + b*c) + 
b*d*f*x^2),x)
 
output
int((A + B*log((e*(a + b*x)^n)/(c + d*x)^n))^p/(a*c*f + f*x*(a*d + b*c) + 
b*d*f*x^2), x)